Package 'TruncExpFam'

Title: Truncated Exponential Family
Description: Handles truncated members from the exponential family of probability distributions. Contains functions such as rtruncnorm() and dtruncpois(), which are truncated versions of rnorm() and dpois() from the stats package that also offer richer output containing, for example, the distribution parameters. It also provides functions to retrieve the original distribution parameters from a truncated sample by maximum-likelihood estimation.
Authors: René Holst [aut], Waldir Leoncio [cre, aut]
Maintainer: Waldir Leoncio <[email protected]>
License: GPL-3
Version: 1.2.0
Built: 2024-10-26 05:57:32 UTC
Source: https://github.com/ocbe-uio/truncexpfam

Help Index


Prints welcome message on package load

Description

Prints package version number and welcome message on package load

Usage

.onAttach(libname, pkgname)

Arguments

libname

library location. See ?base::.onAttach for details

pkgname

package name. See ?base::.onAttach for details


Averages out the sufficient statistics T(y)

Description

Takes a vector of values and returns the column average of their sufficient statistic (determined by their class)

Usage

averageT(y)

Arguments

y

vector of values

Value

A vector with the average of the sufficient statistics


Probability Density Function

Description

Calculates the PDF for a given truncated distribution

Usage

dtruncbeta(y, shape1, shape2, eta, a = 0, b = 1, ...)

dtruncbinom(y, size, prob, eta, a = 0, b = attr(y, "parameters")$size, ...)

dtruncchisq(y, df, eta, a = 0, b = Inf, ...)

dtrunccontbern(y, lambda, eta, a = 0, b = 1, ...)

dtrunccontbern(y, lambda, eta, a = 0, b = 1, ...)

dtrunc(y, ...)

dtruncexp(y, rate = 1, eta, a = 0, b = Inf, ...)

dtruncgamma(y, shape, rate = 1, scale = 1/rate, eta, a = 0, b = Inf, ...)

dtruncinvgamma(y, shape, rate = 1, scale = 1/rate, eta, a = 0, b = Inf, ...)

dtruncinvgauss(y, m, s, eta, a = 0, b = Inf, ...)

dtrunclnorm(y, meanlog = 0, sdlog = 1, eta, a = 0, b = Inf, ...)

## S3 method for class 'trunc_nbinom'
dtrunc(y, size, prob, eta, a = 0, b = Inf, ...)

dtruncnbinom(y, size, prob, eta, a = 0, b = Inf, ...)

dtruncnbinom(y, size, prob, eta, a = 0, b = Inf, ...)

dtruncnorm(y, mean = 0, sd = 1, eta, a = -Inf, b = Inf, ...)

dtruncpois(y, lambda, eta, a = 0, b = Inf, ...)

Arguments

y

output from rtrunc or any valid numeric value(s).

shape1

positive shape parameter alpha

shape2

positive shape parameter beta

eta

vector of natural parameters

a

point of left truncation. For discrete distributions, a will be included in the support of the truncated distribution.

b

point of right truncation

...

size

size

target for number of successful trials, or dispersion parameter (the shape parameter of the gamma mixing distribution). Must be strictly positive, need not be integer.

prob

probability of success on each trial

df

degrees of freedom for "parent" distribution

lambda

mean and var of "parent" distribution

rate

inverse gamma rate parameter

shape

inverse gamma shape parameter

scale

inverse gamma scale parameter

m

vector of means

s

vector of dispersion parameters

meanlog

mean of untruncated distribution

sdlog

standard deviation of untruncated distribution

mean

mean of parent distribution

sd

standard deviation is parent distribution

Value

The density of y for the given values of the eta parameter.

Note

Either the common or the natural parameters must be provided.

Examples

# Using the output of rtrunc
y <- rtrunc(50, mean = 5, sd = 2)
dtrunc(y, eta = c(0, -1))

# Directly-inputting values
dtruncnorm(y = c(5, 0, -10), eta = c(0, -0.05))

Calculate empirical parameters

Description

Returns the empirical parameter estimate for a distribution

Usage

empiricalParameters(y, ...)

Arguments

y

output of rtrunc

...

other arguments passed to methods

Value

A vector of parameter estimates for the input sample

Examples

# Normal distribution
sampNorm <- rtrunc(50, mean = 5, sd = 2)
empiricalParameters(sampNorm)

# Poisson distribution
sampPois <- rtrunc(10, lambda = 100, family = "Poisson")
empiricalParameters(sampPois)

Extract parameters

Description

Extract parameters

Usage

## S3 method for class 'numeric'
empiricalParameters(y, family = "gaussian", natural = FALSE, ...)

Arguments

y

Numeric vector containing observations from a random variable

family

Distribution family to assume for y

natural

Should output be in terms of the natural parameter eta?

...

arguments passed to empiricalParameters()

Examples

# Some random data
x <- c(
  4, 3, 6, 3, 3, 3, 3, 4, 3, 2, 3, 0, 4, 2, 0, 1, 4, 3, 0, 0, 2, 3, 0, 3, 7,
  2, 1, 1, 2, 3, 2, 3, 3, 3, 2, 2, 2, 0, 2, 0, 2, 1, 0, 2, 3, 1, 0, 4, 2, 2,
  0, 1, 1, 1, 2, 2, 3, 1, 3, 1, 1, 0, 3, 3, 2, 0, 2, 2, 3, 0, 2, 1, 0, 0, 1,
  0, 2, 4, 2, 3, 3, 0, 1, 0, 5, 2, 4, 2, 7, 4, 4, 1, 2, 4, 3, 2, 4, 3, 1, 3
)

# Extracting parameters under different distribution assumptions
empiricalParameters(x, family = "normal")
empiricalParameters(x, family = "normal", natural = TRUE)
empiricalParameters(x, family = "binomial", nsize = max(x))
empiricalParameters(x, family = "poisson", natural = FALSE)
empiricalParameters(x, family = "poisson", natural = TRUE)

Generates an rtrunc-dispatchable class

Description

Matches a list of arguments to an rtrunc method

Usage

genrtruncClass(n, family, parms)

Arguments

n

sample size

family

distribution family

parms

list of parameters passed to rtrunc (through the ... element)

Value

A character string.

Author(s)

Waldir Leoncio


ML Estimation of Distribution Parameters

Description

ML-estimation of the parameters of the distribution of the specified family, truncated at y.min and y.max

Usage

mlEstimationTruncDist(
  y,
  y.min = attr(y, "truncation_limits")$a,
  y.max = attr(y, "truncation_limits")$b,
  tol = 1e-05,
  max.it = 100,
  delta = 0.33,
  print.iter = 0,
  ny = 100,
  family = NULL,
  ...
)

Arguments

y

Sequence spanning the domain of the truncated distribution

y.min

Lower bound for y

y.max

Upper bound for y

tol

Error tolerance for parameter estimation

max.it

Maximum number of iterations

delta

Indirectly, the difference between consecutive iterations to compare with the error tolerance

print.iter

Determines the frequency of printing (i.e., prints every print.iter iterations)

ny

size of intermediate y range sequence. Higher values yield better estimations but slower iterations

family

distribution family to use

...

other parameters passed to subfunctions

Details

If print.iter = TRUE, the function prints the iteration, the sum of squares of delta.eta.j (delta.L2), and the current parameter estimates. The delta argument of this function is a factor in the calculation of delta.eta.j, which in turn is a factor in the calculation of delta.L2.

Value

A vector of class ⁠trunc_*⁠ containing the maximum-likelihood estimation of the underlying distribution * parameters.

Author(s)

René Holst

References

Inspired by Salvador: Pueyo: "Algorithm for the maximum likelihood estimation of the parameters of the truncated normal and lognormal distributions"

Examples

sample_size <- 1000
# Normal
sample.norm <- rtrunc(n = sample_size, mean = 2, sd = 1.5, a = -1)
mlEstimationTruncDist(
  sample.norm,
  y.min = -1, max.it = 500, delta = 0.33,
  print.iter = TRUE
)

# Log-Normal
sample.lognorm <- rtrunc(
  n = sample_size, family = "lognormal", meanlog = 2.5, sdlog = 0.5, a = 7
)
ml_lognormal <- mlEstimationTruncDist(
  sample.lognorm,
  y.min = 7, max.it = 500, tol = 1e-10, delta = 0.3,
  print.iter = FALSE
)
ml_lognormal

# Poisson
sample.pois <- rtrunc(
 n = sample_size, lambda = 10, a = 4, family = "Poisson"
)
mlEstimationTruncDist(
  sample.pois,
  y.min = 4, max.it = 500, delta = 0.33,
  print.iter = 5
)

# Gamma
sample.gamma <- rtrunc(
 n = sample_size, shape = 6, rate = 2, a = 2, family = "Gamma"
)
mlEstimationTruncDist(
  sample.gamma,
  y.min = 2, max.it = 1500, delta = 0.3,
  print.iter = 10
)

# Negative binomial
sample.nbinom <- rtruncnbinom(
 sample_size, size = 50, prob = .3, a = 100, b = 120
)
mlEstimationTruncDist(sample.nbinom, r=10)

Convert natural parameters to distribution parameters

Description

Convert natural parameters to distribution parameters

Usage

natural2parameters(eta, ...)

Arguments

eta

vector of natural parameters

...

other arguments passed to methods

Value

A vector of the original distribution parameters

See Also

parameters2natural()

Examples

samp <- rtrunc(n = 100, lambda = 2, family = "Poisson")
lambda_hat <- empiricalParameters(samp)
eta_hat <- parameters2natural(lambda_hat)
natural2parameters(eta_hat)  # yields back lambda

Convert distribution parameters to natural parameters

Description

Convert distribution parameters to natural parameters

Usage

parameters2natural(parms, ...)

Arguments

parms

A vector of parameters in a distribution distribution

...

other arguments passed to methods

Value

A vector containing the natural parameters

See Also

natural2parameters()

Examples

# Poisson distribution
samp <- rtrunc(n = 100, lambda = 2, family = "Poisson")
parameters2natural(empiricalParameters(samp))

Print sample from truncated distribution

Description

Special printing methods for trunc_* classes.

Usage

## S3 method for class 'trunc'
print(x, details = FALSE, ...)

Arguments

x

object to print

details

if FALSE (default), hides the attributes of x

...

other arguments passed to base::print.default()

Value

x with or without its attributes

Author(s)

Waldir Leoncio


Probability distribution class

Description

An R object describing the properties of a probability distribution.

Value

An RC class containing statistical properties of that distribution, namely its name, parameter names and values and natural parameter names and values.

Author(s)

Waldir Leoncio

Examples

probdist(shape = 2, scale = .25, family = "gamma")
probdist(mean = 2, sd = 10, family = "normal")
probdist(eta1 = 2, eta2 = -1, family = "normal")

Cumulative Distribution Function

Description

Calculates the cumulative probability for a given truncated distribution

Usage

ptrunc(q, family, ..., lower.tail = TRUE, log.p = FALSE)

ptruncnorm(
  q,
  mean = 0,
  sd = 1,
  a = -Inf,
  b = Inf,
  ...,
  lower.tail = TRUE,
  log.p = FALSE
)

ptruncbeta(
  q,
  shape1,
  shape2,
  a = 0,
  b = 1,
  ...,
  lower.tail = TRUE,
  log.p = FALSE
)

ptruncbinom(
  q,
  size,
  prob,
  a = 0,
  b = size,
  ...,
  lower.tail = TRUE,
  log.p = FALSE
)

ptruncpois(q, lambda, a = 0, b = Inf, ..., lower.tail = TRUE, log.p = FALSE)

ptruncchisq(q, df, a = 0, b = Inf, ..., lower.tail = TRUE, log.p = FALSE)

ptrunccontbern(q, lambda, a = 0, b = 1, ...)

ptruncexp(q, rate = 1, a = 0, b = Inf, ..., lower.tail = TRUE, log.p = FALSE)

ptruncgamma(
  q,
  shape,
  rate = 1,
  scale = 1/rate,
  a = 0,
  b = Inf,
  ...,
  lower.tail = TRUE,
  log.p = FALSE
)

ptruncinvgamma(
  q,
  shape,
  rate = 1,
  scale = 1/rate,
  a = 0,
  b = Inf,
  ...,
  lower.tail = TRUE,
  log.p = FALSE
)

ptruncinvgauss(q, m, s, a = 0, b = Inf, ...)

ptrunclnorm(
  q,
  meanlog = 0,
  sdlog = 1,
  a = 0,
  b = Inf,
  ...,
  lower.tail = TRUE,
  log.p = FALSE
)

ptruncnbinom(
  q,
  size,
  prob,
  mu,
  a = 0,
  b = Inf,
  ...,
  lower.tail = TRUE,
  log.p = FALSE
)

Arguments

q

vector of quantiles

family

distribution family to use

...

named distribution parameters and/or truncation limits (a, b)

lower.tail

logical; if TRUE, probabilities are P(X<=x)P(X <= x) otherwise, P(X>x)P(X > x)

log.p

logical; if TRUE, probabilities p are given as log(p)

mean

mean of parent distribution

sd

standard deviation is parent distribution

a

point of left truncation. For discrete distributions, a will be included in the support of the truncated distribution.

b

point of right truncation

shape1

positive shape parameter alpha

shape2

positive shape parameter beta

size

target for number of successful trials, or dispersion parameter (the shape parameter of the gamma mixing distribution). Must be strictly positive, need not be integer.

prob

probability of success on each trial

lambda

mean and var of "parent" distribution

df

degrees of freedom for "parent" distribution

rate

inverse gamma rate parameter

shape

inverse gamma shape parameter

scale

inverse gamma scale parameter

m

vector of means

s

vector of dispersion parameters

meanlog

mean of untruncated distribution

sdlog

standard deviation of untruncated distribution

mu

alternative parametrization via mean

Value

The cumulative probability of y.

Examples

ptrunc(0)
ptrunc(6, family = "gaussian", mean = 5, sd = 10, b = 7)
pnorm(6, mean = 5, sd = 10) # for comparison

Quantile Function

Description

Calculates quantile for a given truncated distribution and probability.

Usage

qtrunc(p, family, ..., lower.tail = TRUE, log.p = FALSE)

qtruncbeta(
  p,
  shape1,
  shape2,
  a = 0,
  b = 1,
  ...,
  lower.tail = TRUE,
  log.p = FALSE
)

qtruncbinom(
  p,
  size,
  prob,
  a = 0,
  b = size,
  ...,
  lower.tail = TRUE,
  log.p = FALSE
)

qtruncchisq(p, df, a = 0, b = Inf, ..., lower.tail = TRUE, log.p = FALSE)

qtrunccontbern(p, lambda, a = 0, b = 1, ..., lower.tail = TRUE, log.p = FALSE)

qtruncexp(p, rate = 1, a = 0, b = Inf, ..., lower.tail = TRUE, log.p = FALSE)

qtruncgamma(
  p,
  shape,
  rate = 1,
  scale = 1/rate,
  a = 0,
  b = Inf,
  ...,
  lower.tail = TRUE,
  log.p = FALSE
)

qtruncinvgamma(
  p,
  shape,
  rate = 1,
  scale = 1/rate,
  a = 0,
  b = Inf,
  ...,
  lower.tail = TRUE,
  log.p = FALSE
)

qtruncinvgauss(p, m, s, a = 0, b = Inf, ..., lower.tail = TRUE, log.p = FALSE)

qtrunclnorm(
  p,
  meanlog = 0,
  sdlog = 1,
  a = 0,
  b = Inf,
  ...,
  lower.tail = TRUE,
  log.p = FALSE
)

qtruncnbinom(
  p,
  size,
  prob,
  mu,
  a = 0,
  b = Inf,
  ...,
  lower.tail = TRUE,
  log.p = FALSE
)

qtruncnorm(
  p,
  mean = 0,
  sd = 1,
  a = -Inf,
  b = Inf,
  ...,
  lower.tail = TRUE,
  log.p = FALSE
)

qtruncpois(p, lambda, a = 0, b = Inf, ..., lower.tail = TRUE, log.p = FALSE)

Arguments

p

vector of quantiles

family

distribution family to use

...

named distribution parameters and/or truncation limits (a, b)

lower.tail

logical; if TRUE, probabilities are P(X<=x)P(X <= x) otherwise, P(X>x)P(X > x)

log.p

logical; if TRUE, probabilities p are given as log(p)

shape1

positive shape parameter alpha

shape2

positive shape parameter beta

a

point of left truncation. For discrete distributions, a will be included in the support of the truncated distribution.

b

point of right truncation

size

target for number of successful trials, or dispersion parameter (the shape parameter of the gamma mixing distribution). Must be strictly positive, need not be integer.

prob

probability of success on each trial

df

degrees of freedom for "parent" distribution

lambda

mean and var of "parent" distribution

rate

inverse gamma rate parameter

shape

inverse gamma shape parameter

scale

inverse gamma scale parameter

m

vector of means

s

vector of dispersion parameters

meanlog

mean of untruncated distribution

sdlog

standard deviation of untruncated distribution

mu

alternative parametrization via mean

mean

mean of parent distribution

sd

standard deviation is parent distribution

Value

The quantile of p.

Examples

qtrunc(0.75)
qtrunc(.2, family = "gaussian", mean = 5, sd = 10, b = 7)
qnorm(.2, mean = 5, sd = 10) # for comparison

The Truncated Exponential Family

Description

Random generation for the truncated exponential family distributions. Please refer to the "Details" and "Examples" section for more information on how to use this function.

Usage

rtruncbeta(n, shape1, shape2, a = 0, b = 1, faster = FALSE)

rtruncbinom(n, size, prob, a = 0, b = size, faster = FALSE)

rtruncchisq(n, df, a = 0, b = Inf, faster = FALSE)

rtrunccontbern(n, lambda, a = 0, b = 1, faster = FALSE)

rtruncexp(n, rate = 1, a = 0, b = Inf, faster = FALSE)

rtruncgamma(n, shape, rate = 1, scale = 1/rate, a = 0, b = Inf, faster = FALSE)

rtruncinvgamma(
  n,
  shape,
  rate = 1,
  scale = 1/rate,
  a = 0,
  b = Inf,
  faster = FALSE
)

rtruncinvgauss(n, m, s, a = 0, b = Inf, faster = FALSE)

rtrunclnorm(n, meanlog, sdlog, a = 0, b = Inf, faster = FALSE)

rtruncnbinom(n, size, prob, mu, a = 0, b = Inf, faster = FALSE)

rtruncnorm(n, mean, sd, a = -Inf, b = Inf, faster = FALSE)

rtruncpois(n, lambda, a = 0, b = Inf, faster = FALSE)

rtrunc(n, family = "gaussian", faster = FALSE, ...)

rtrunc_direct(n, family = "gaussian", parms, a, b, ...)

Arguments

n

sample size

shape1

positive shape parameter alpha

shape2

positive shape parameter beta

a

point of left truncation. For discrete distributions, a will be included in the support of the truncated distribution.

b

point of right truncation

faster

if TRUE, samples directly from the truncated distribution (more info in details)

size

target for number of successful trials, or dispersion parameter (the shape parameter of the gamma mixing distribution). Must be strictly positive, need not be integer.

prob

probability of success on each trial

df

degrees of freedom for "parent" distribution

lambda

mean and var of "parent" distribution

rate

inverse gamma rate parameter

shape

inverse gamma shape parameter

scale

inverse gamma scale parameter

m

vector of means

s

vector of dispersion parameters

meanlog

mean of untruncated distribution

sdlog

standard deviation of untruncated distribution

mu

alternative parametrization via mean

mean

mean of parent distribution

sd

standard deviation is parent distribution

family

distribution family to use

...

individual arguments to each distribution

parms

list of parameters passed to rtrunc (through the ... element)

Details

One way to use this function is by calling the rtrunc generic with the family parameter of your choice. You can also specifically call one of the methods (e.g. rtruncpois(10, lambda=3) instead of ⁠rtrunc(10, family="poisson", lambda=3)). The latter is more flexible (i.e., easily programmable) and more robust (i.e., it contains better error handling and validation procedures), while the former better conforms with the nomenclature from other distribution-related functions in the ⁠stats' package.

Setting faster=TRUE uses a new algorithm that samples directly from the truncated distribution, as opposed to the old algorithm that samples from the untruncated distribution and then truncates the result. The advantage of the new algorithm is that it is way faster than the old one, particularly for highly-truncated distributions. On the other hand, the sample for untruncated distributions called through rtrunc() will no longer match their stats-package counterparts for the same seed.

Value

A sample of size n drawn from a truncated distribution

vector of one of the ⁠rtrunc_*⁠ classes containing the sample elements, as well as some attributes related to the chosen distribution.

Note

The current sample-generating algorithm may be slow if the distribution is largely represented by low-probability values. This will be fixed soon. Please follow https://github.com/ocbe-uio/TruncExpFam/issues/72 for details.

Author(s)

René Holst, Waldir Leôncio

Examples

# Truncated binomial distribution
sample.binom <- rtrunc(
  100, family = "binomial", prob = 0.6, size = 20, a = 4, b = 10
)
sample.binom
plot(
  table(sample.binom), ylab = "Frequency", main = "Freq. of sampled values"
)

# Truncated Log-Normal distribution
sample.lognorm <- rtrunc(
  n = 100, family = "lognormal", meanlog = 2.5, sdlog = 0.5, a = 7
)
summary(sample.lognorm)

hist(
  sample.lognorm,
  nclass = 35, xlim = c(0, 60), freq = FALSE,
  ylim = c(0, 0.15)
)

# Normal distribution
sample.norm <- rtrunc(n = 100, mean = 2, sd = 1.5, a = -1)
head(sample.norm)
hist(sample.norm, nclass = 25)

# Gamma distribution
sample.gamma <- rtrunc(n = 100, family = "gamma", shape = 6, rate = 2, a = 2)
hist(sample.gamma, nclass = 15)

# Poisson distribution
sample.pois <- rtrunc(n = 10, family = "poisson", lambda = 10, a = 4)
sample.pois
plot(table(sample.pois))

Truncated Exponential Family

Description

TruncExpFam is an R package to handle truncated members from the exponential family.

Details

This package offers truncated counterparts of the density-, distribution-, quantile- and sampling-functions for a broad range of distributions from the exponential family, as implemented in the stats package.

The package also provides functions for estimating the parameters of the distributions from data, given the truncation limits.

For more info, please check rtrunc(), dtrunc() and print.trunc(). Counterparts for density and probability functions are on the roadmap for a future release.

Supported distributions

  • Beta

  • Binomial

  • Chi-Square

  • Continuous Bernoulli

  • Exponential

  • Gamma

  • Inverse Gamma

  • Inverse Gaussian

  • Log-normal

  • Negative Binomial

  • Normal

  • Poisson

Note

Found a bug? Want to suggest a feature? Contribute to the scientific and open source communities by opening an issue on our home page. Check the "BugReports" field on packageDescription("TruncExpFam") for the URL.

Author(s)

Maintainer: Waldir Leoncio [email protected]

Authors:

See Also

Useful links:


Validate family parameters

Description

Checks if a combination of distribution family and parameters is valid.

Usage

validateFamilyParms(family, parms)

Arguments

family

character with family distribution name

parms

character vector with distribution parameter names

Value

list telling if family-parm combo is valid + the family name

Author(s)

Waldir Leoncio