Package: BayesSurvive 0.0.5

Zhi Zhao

BayesSurvive: Bayesian Survival Models for High-Dimensional Data

An implementation of Bayesian survival models with graph-structured selection priors for sparse identification of omics features predictive of survival (Madjar et al., 2021 <doi:10.1186/s12859-021-04483-z>) and its extension to use a fixed graph via a Markov Random Field (MRF) prior for capturing known structure of omics features, e.g. disease-specific pathways from the Kyoto Encyclopedia of Genes and Genomes database.

Authors:Zhi Zhao [aut, cre], Waldir Leoncio [aut], Katrin Madjar [aut], Tobias Østmo Hermansen [aut], Manuela Zucknick [ctb], Jörg Rahnenführer [ctb]

BayesSurvive_0.0.5.tar.gz

BayesSurvive_0.0.5.tgz(r-4.4-x86_64)BayesSurvive_0.0.5.tgz(r-4.4-arm64)BayesSurvive_0.0.4.tgz(r-4.3-x86_64)BayesSurvive_0.0.4.tgz(r-4.3-arm64)
BayesSurvive_0.0.5.tar.gz(r-4.5-noble)BayesSurvive_0.0.5.tar.gz(r-4.4-noble)
BayesSurvive.pdf |BayesSurvive.html
BayesSurvive/json (API)
NEWS

# Install 'BayesSurvive' in R:
install.packages('BayesSurvive', repos = c('https://ocbe-uio.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/ocbe-uio/bayessurvive/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:

On CRAN:

bayesian-cox-modelsbayesian-variable-selectiongraph-learninghigh-dimensional-statisticsomics-data-integrationsurvival-analysis

4.70 score 1 stars 1 scripts 193 downloads 7 exports 131 dependencies

Last updated 2 months agofrom:2f6a148cb7. Checks:OK: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 03 2024
R-4.5-linux-x86_64OKNov 03 2024
R-4.4-mac-x86_64OKNov 03 2024
R-4.4-mac-aarch64OKNov 03 2024
R-4.3-mac-x86_64OKAug 19 2024
R-4.3-mac-aarch64OKAug 19 2024

Exports:BayesSurvivefunc_MCMCfunc_MCMC_graphplotBrierUpdateGammaUpdateRPlee11VS

Dependencies:backportsbase64encbriobslibcachemcallrcheckmatecliclustercmprskcodetoolscolorspacecpp11crayondata.tabledescdiagramdiffobjdigestdoParalleldplyrevaluatefansifarverfastmapfontawesomeforcatsforeachforeignFormulafsfuturefuture.applygenericsGGallyggplot2ggstatsglobalsgluegridExtragtablehighrHmischmshtmlTablehtmltoolshtmlwidgetsisobanditeratorsjquerylibjsonliteKernSmoothknitrlabelinglatticelavalifecyclelistenvmagrittrMASSMatrixMatrixModelsmemoisemetsmgcvmimemultcompmunsellmvtnormnlmennetnumDerivparallellypatchworkpillarpkgbuildpkgconfigpkgloadplotrixplyrpolsplinepraiseprettyunitsprocessxprodlimprogressprogressrpsPublishpurrrquantregR6rangerrappdirsRColorBrewerRcppRcppArmadilloRcppEigenrematch2riskRegressionrlangrmarkdownrmsrpartrprojrootrstudioapisandwichsassscalesshapeSparseMSQUAREMstringistringrsurvivaltestthatTH.datatibbletidyrtidyselecttimeregtinytexutf8vctrsviridisviridisLitewaldowithrxfunyamlzoo

Bayesian Cox Models with graph-structure priors

Rendered fromBayesCox.Rmdusingknitr::rmarkdownon Nov 03 2024.

Last update: 2024-06-05
Started: 2024-04-23